Review the table of values for function g(x). x g(x) 2.9 -1.55 2.99 -1.58 2.999 -1.59 3.001 1.59 3.01 1.58 3.1 1.55 Which statement correctly explains whether Limit x→3 g(x) exists? a. The limits lim x→3⁻ g(x) = -1.6 and lim x→3⁺ g(x) = 1.6. Both lim x→3⁻ g(x) and lim x→3⁺ g(x) exist; so lim x→3 g(x) exists. b. The limits lim x→3⁻ g(x) = 1.6 and lim x→3⁺ g(x) = -1.6. Both lim x→3⁻ g(x) and lim x→3⁺ g(x) exist; so lim x→3 g(x) exists. c. The limits limx→3⁻ g(x) = -1.6 and lim x→3⁺ g(x) = 1.6. Because lim x→3⁻ g(x) ≠ lim x→3⁺ g(x) does not exist d. The limits lim x→3⁻ g(x) =1.6 and lim x→3⁺ g(x) = -1.6. Because lim x→3⁻ g(x) ≠ lim x→3⁺ g(x) does not exist