Respuesta :

Riia

Here we have to use the following formula

[tex] l=\int\limits^a_b {\sqrt{1+(x')^2} \, dy [/tex]

x' is the derivative with respect to y

Given value of x is

[tex] x = y^{1/2} [/tex]

Differentiating with respet to y

[tex] x ' = \frac{1}{2y^{1/2}} [/tex]

Substituting the value of x' in the formula, we will get

[tex] L=\int\limits^4_0 { \sqrt{1+\frac{1}{4y}}} \, dy [/tex]

[tex] L = 4.65 [/tex]