Respuesta :

[tex](f+g)(x)=4x^2+\frac{3}{2}x-7[/tex]

Answer:

[tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]

Step-by-step explanation:

Given:  

[tex]f(x)=\dfrac{x}{2}-3[/tex]

[tex]g(x)=4x^2+x-4[/tex]

To find: (f+g)(x)

It is a composite function. Sum of f and g function.

[tex]h(x)=f(x)+g(x)[/tex]

[tex]h(x)=\dfrac{x}{2}-3+4x^2+x-4[/tex]

Combine the like term

[tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]

Hence, The sum of f(x) and g(x) would be [tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]