Respuesta :
B
using the laws of logarithms
• log x + log y = log(xy)
• log [tex]x^{n}[/tex] = n logx
• log x = log y ⇒ x = y
ln 20 + ln 5 = ln(20 × 5 ) = ln 100, hence
ln 100 = ln [tex]x^{2}[/tex], hence
x² = 100 ⇒x = [tex]\sqrt{100}[/tex] = 10 → B
B
using the laws of logarithms
• log x + log y = log(xy)
• log [tex]x^{n}[/tex] = n logx
• log x = log y ⇒ x = y
ln 20 + ln 5 = ln(20 × 5 ) = ln 100, hence
ln 100 = ln [tex]x^{2}[/tex], hence
x² = 100 ⇒x = [tex]\sqrt{100}[/tex] = 10 → B