contestada

Find the values for a and b that would make the following equation true.

[tex](ax ^{2} )( - 6x ^{b}) = 12x ^{5} [/tex]
A= ?
B= ?​

Respuesta :

Answer:

\left(ax^2\right)\left(-6x^b\right)=12x^5\\\\(-6a)x^{2+b}=12x^5\to -6a=12\ and\ 2+b=5\\\\-6a=12\ \ \ |:(-6)\\a=-2\\\\2+b=5\ \ \ |-2\\b=3

Answer:\ a=-2;\ b=3

Step-by-step explanation:

Answer:

a = - 2 and b = 3

Step-by-step explanation:

Expand the left side and compare relevant values to the right side

(ax²)(-6[tex]x^{b}[/tex]) = - 6a[tex]x^{2+b}[/tex]

For the 2 sides to equate then

- 6a = 12 ⇒ a = - 2 and

2 + b = 5 ⇒ b = 5 - 2 = 3