Respuesta :

Answer:

[tex]\sqrt[3]{x^{10} }[\tex]

Step-by-step explanation:

Exponential Rules:

[tex]x^{a} + x^{b} = x^{a + b}[/tex]

[tex]\sqrt[b]{x^{a} } =x^{\frac{a}{b} }

Original Equation:

[tex]\sqrt[3]{x^{10} }  = x^{\frac{10}{3} }

Answer:

[tex]\sqrt[3]{x^{10} }[\tex]

Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}[/tex]

[tex]x^{3} x^{\frac{1}{3} }[/tex]

Convert them, so they have a common denominator - [tex]\frac{1}{3}[/tex]

[tex]\frac{3}{1}  * \frac{1}{3}=  \frac{9}{3}[/tex]

[tex]\frac{9}{3} + \frac{1}{3} = \frac{10}{3}[/tex]

[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]