Respuesta :

ANSWER

[tex]8P_4 = 1680[/tex]

EXPLANATION

We use the formula

[tex]nP_r = \frac{n!}{(n - r)!} [/tex]

For

[tex]8P_4[/tex]

and n=8, r=4.

[tex]8P_4= \frac{8!}{(8- 4)!} [/tex]

This simplifies to

[tex]8P_4= \frac{8!}{4!} [/tex]

We expand the numerator using factorial notation,

[tex]8P_4= \frac{8 \times 7 \times 6 \times 5 \times 4!}{4!} [/tex]

The common factors cancel out.

[tex]8P_4= 8 \times 7 \times 6 \times 5[/tex]

[tex]8P_4= 1680[/tex]