need to write steps and solve
thanks

Answer:
The coordinates of endpoint V is (7,-27)
Solution:
Given that the midpoint of line segment UV is (5,-11) And U is (3,5).
To find the coordinates of V.
The formula for mid-point of a line segment is as follows,
Midpoint of UV is [tex]\frac{x_{1}+x_{2}}{2}[/tex], [tex]\frac{y_{1}+y_{2}}{2}[/tex]
As per the formula, [tex]\frac{x_{1}+x_{2}}{2}[/tex]=5, [tex]\frac{y_{1}+y_{2}}{2}[/tex]=-11
Here [tex]x_{1}=3; y_{1}=5[/tex]
Substituting the value of [tex]x_{1}[/tex] we get,
[tex]\frac{3+x_{2}}{2}[/tex]=5
[tex]3+x_{2}=5\times2[/tex]
[tex]x_{2}=10-3[/tex]
[tex]x_{2}=7[/tex]
Substituting the value of [tex]x_{2}[/tex] we get,
[tex]\frac{5+y_{2}}{2}[/tex]=-11
[tex]5+y_{2}=-11\times2[/tex]
[tex]y_{2}=-22-5[/tex]
[tex]y_{2}=-27[/tex]
So, the coordinates of V is (7,-27)