Which statement describes the function y = axn when a = 1 and n is even?
The graph opens down.The graph is symmetric about the x axis.The graph passes through (–1, 1), (0, 0), and (1, 1).The graph has more than one x intercept.

Respuesta :

caylus
Hello,

y=ax^n
a=1
n=2k

f(x)=y=x^(2k)

A:
y'=2k*x^(2k-1)
if x<0 y'<0
if x>0 y'>0 ==>opens upwise

f(-1)=(-1)^(2k)=1
f(0)=0^(2k)=0
f(1)=1^(2k)=1 C is exact

y=x² has one intercept with x axis.

Answer C





f(-x)=(-x)^(2k)=((-x)^2)k=(x²)^k=x^(2k)
The graph is symmetric about y axis



Idea63

Answer: C

The graph passes through (–1, 1), (0, 0), and (1, 1).

Step-by-step explanation:

Ver imagen Idea63