Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

Given two expressions:

[tex]2(s+0.5)+2(s+1.5)[/tex]

and

[tex]4\left(\dfrac{1}{2}s+\dfrac{1}{4}s\right)+4[/tex]

a. When [tex]s=0,[/tex]

then

[tex]2(s+0.5)+2(s+1.5)=2(0+0.5)+2(0+1.5)=1+3=4[/tex]

and

[tex]4\left(\dfrac{1}{2}s+\dfrac{1}{4}s\right)+4=4\left(\dfrac{1}{2}\cdot 0+\dfrac{1}{4}\cdot 0\right)+4=4[/tex]

b. When [tex]s=12,[/tex]

then

[tex]2(s+0.5)+2(s+1.5)=2(12+0.5)+2(12+1.5)=2\cdot 12.5+2\cdot 13.5=25+27=52[/tex]

and

[tex]4\left(\dfrac{1}{2}s+\dfrac{1}{4}s\right)+4=4\left(\dfrac{1}{2}\cdot 12+\dfrac{1}{4}\cdot 12\right)+4=4(6+3)+4=4\cdot 9+4=36+6=40[/tex]

c. Since the value of both expressions at s = 12 are different, the expressions are not equivalent.