A potter’s wheel moves from rest to an angular speed of 0.50 rev/s in 28.9 s. Assuming constant angular acceleration, what is its angular acceleration in rad/s2 ? Answer in units of rad/s 2 .

Respuesta :

Answer:

0.108 rad/s².

Explanation:

Given that

Initial angular velocity ,ωi = 0 rad/s

Final angular velocity ωf= 0.5 rev/s

We know that

1 rev/s = 6.28 rad/s

ωf= 3.14 rad/s

t= 28.9 s

We know that (if acceleration is constant)

ωf=ωi + α t

α=Angular acceleration

3.14 = 0 + α x 28.9

[tex]\alpha=\dfrac{3.14}{28.9}\ rad/s^2\\\alpha=0.108\ rad/s^2[/tex]

Therefore the acceleration will be 0.108 rad/s².

Therefore the answer will be 0.108 rad/s².