Respuesta :

The solution set is x = 3, y = 4 (or) x = 3, y = –4.

Solution:

Given system of algebraic equations are

[tex]y^{2}+(x-8)^{2}=41[/tex] – – – – – (1)

[tex]y^{2}-25=-x^{2}[/tex] – – – – – (2)

Expand equation (1) using algebraic identity: [tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]y^{2}+x^2-16x+64=41[/tex]

subtract 64 from both sides of the equation

[tex]y^{2}+x^2-16x+64-64=41-64[/tex]

[tex]y^{2}+x^2-16x=-23[/tex] – – – – – (3)

Now, to arrange equation (2) in order, add [tex]x^2[/tex] on both sides.

[tex]y^{2}-25+x^2=-x^{2}+x^2[/tex]

[tex]y^{2}-25+x^2=0[/tex]

Add 25 on both sides of the equation,

[tex]y^{2}+x^2=25[/tex] – – – – – (4)

To solve this subtract equation (4) from equation (3)

[tex]\Rightarrow y^{2}+x^2-16x-(y^{2}+x^2)=-23-25[/tex]

[tex]\Rightarrow y^{2}+x^2-16x-y^{2}-x^2=-23-25[/tex]

[tex]\Rightarrow -16x=-48[/tex]

Divide both sides of the equation by –16,

x = 3

Substitute x = 3 in equation (4), we get

[tex]\Rightarrow y^{2}+3^2=25[/tex]

[tex]\Rightarrow y^{2}=25-9[/tex]

[tex]\Rightarrow y^{2}=16[/tex]

[tex]\Rightarrow y=\pm 4[/tex]

i. e. y = 4 (or) y = –4

The solution set is x = 3, y = 4 (or) x = 3, y = –4.