moey67
contestada

A conical paper cup has dimensions as shown in the diagram. How much water can the cup hold when full?
30r cm3
35r1 cm3
40 cm3
45 cm3

Respuesta :

Question:

The complete figure of question is attached below

Answer:

The cup can hold 94.2 [tex]cm^3[/tex] or [tex]30 \pi\ cm^3[/tex] of water

Solution:

Given that,

Diameter = 6 cm

[tex]Radius = \frac{diameter}{2}\\\\Radius = \frac{6}{2}\\\\Radius = 3\ cm[/tex]

Also,

Height = 10 cm

The volume of cone is given as:

[tex]V = \frac{1}{3} \times \pi \times r^2 \times h[/tex]

Where,

"r" is the radius and "h" is the height

Substituting the values we get,

[tex]V = \frac{1}{3} \times \pi \times 3^2 \times 10\\\\V = \pi \times 3 \times 10\\\\V = 30 \pi\\\\V = 30 \times 3.14\\\\V = 94.2\ cm^3[/tex]

Thus the volume of cup is 94.2 [tex]cm^3[/tex] or [tex]30 \pi\ cm^3[/tex]

Ver imagen iwillanswer

Answer:

Option A is the correct answer

Step-by-step explanation:

A. 30π cm^3