By substitution method [tex](x,y) = (\frac{-1}{3} , 10)[/tex] i.e. x = [tex]\frac{-1}{3}[/tex] and y = 10.
Step-by-step explanation:
We have the following equations and using substitution method we need to find corresponding set of values of x and y:
[tex]x + \frac{y}{3} = 3\\ 3x+ \frac{y}{5} = 1[/tex] -------> eq 2
Let's find value of x in terms of y using equation 1 as:
[tex]x + \frac{y}{3} = 3[/tex]
⇒[tex]x= 3-\frac{y}{3}[/tex]
⇒[tex]x = \frac{9-y}{3}[/tex]
Now, putting this value of x in equation 2 to find value of x:
[tex]3x + \frac{y}{5} = 1\\\\3(\frac{9-y}{3} ) + \frac{y}{5} = 1\\\\9-y + \frac{y}{5} = 1\\\\\frac{-4y}{5} = -8\\[/tex]
[tex]y = 10[/tex]
Since [tex]x = \frac{9-y}{3}[/tex]
∴[tex]x = \frac{9-10}{3} = \frac{-1}{3}[/tex]
Hence by substitution method [tex](x,y) = (\frac{-1}{3} , 10)[/tex] .