Respuesta :
Answer:
The heavier piece acquired 2800 J kinetic energy
Explanation:
From the principle of conservation of linear momentum:
0 = M₁v₁ - M₂v₂
M₁v₁ = M₂v₂
let the second piece be the heavier mass, then
M₁v₁ = (2M₁)v₂
v₁ = 2v₂ and v₂ = ¹/₂ v₁
From the principle of conservation of kinetic energy:
¹/₂ K.E₁ + ¹/₂ K.E₂ = 8400 J
¹/₂ M₁(v₁)² + ¹/₂ (2M₁)(¹/₂v₁)² = 8400
¹/₂ M₁(v₁)² + ¹/₄M₁(v₁)² = 8400
K.E₁ + ¹/₂K.E₁ = 8400
Now, we determine K.E₁ and note that K.E₂ = ¹/₂K.E₁
1.5 K.E₁ = 8400
K.E₁ = 8400/1.5
K.E₁ = 5600 J
K.E₂ = ¹/₂K.E₁ = 0.5*5600 J = 2800 J
Therefore, the heavier piece acquired 2800 J kinetic energy
Answer:
The heavier piece acquired 2800J of energy.
Explanation:
Let the velocity of the first piece be v1 and that of the second piece be v1 and also let the masses be m1 and m2 respectively.
m2 = 2m1
From the principles of conservation of momentum
m1v1 = m2v2
m1v1 = 2m1v2
Dividing through by m1
That is v1 = 2v2
v2 = 1/2v1
Total kinetic energy = 8400J
1/2m1v1² + 1/2m2v2² = 8400
1/2m1v1² + 1/2(2m1) × (1/2v1)² = 8400
1/2m1v1² + 1/4m1v1² = 8400
Let 1/2m1v1 = K1
K1 + 1/2K1 = 8400
3/2K1 = 8400
K1 = 8400× 2/3 = 5600J
K2 = 8400 – 5600 = 2800J