Divide f(x) by d(x), and write a summary statement in the form indicated. f(x) = x^4 - 4x^3 + 2x^2 - 4x + 1; d(x) = x^2 + 1

Answers:

f(x) = (x^2 + 1)( x^2 + 4x + 1)

f(x) = (x^2 + 1)( x^2 - 4x + 1) + 12x + 3

f(x) = (x^2 + 1)( x^2 + 4x + 1) + 12x + 3 

f(x) = (x^2 + 1)( x^2 - 4x + 1)










Respuesta :

[tex]\dfrac{f(x)}{d(x)}=\dfrac{x^4 - 4x^3 + 2x^2 - 4x + 1}{x^2 + 1 }\\ \dfrac{f(x)}{d(x)}=\dfrac{x^4 - 4x^3 + x^2 +x^2 - 4x + 1}{x^2 + 1 }\\ \dfrac{f(x)}{d(x)}=\dfrac{x^4 + x^2 -4x^3-4x+x^2 + 1}{x^2 + 1 }\\ \dfrac{f(x)}{d(x)}=\dfrac{x^2(x^2+1)-4x(x^2+1)+1(x^2+1)}{x^2 + 1 }\\ \dfrac{f(x)}{d(x)}=\dfrac{(x^2+1)(x^2-4x+1)}{x^2 + 1 }\\ \dfrac{f(x)}{d(x)}=x^2-4x+1[/tex]