Respuesta :
Answer: 90% confidence interval for population mean =(21.163, 24.837)
95% confidence interval for population mean =(20.811, 25.189)
Step-by-step explanation:
Confidence interval for population mean ([tex]\mu[/tex]) is given by :-
[tex]\overline{x}\pm z \dfrac{\sigma}{\sqrt{n}}[/tex] , where n= sample size, z= critical z-value , [tex]\overline{x}[/tex]= sample mean [tex]\sigma[/tex]= population standard deviation.
Given : n= 36 , [tex]\overline{x}=23[/tex] cubic centimeters per cubic meter.
[tex]\sigma=6.7[/tex]cubic centimeters per cubic meter
For 90% confidence level , z= 1.645 [by z-table]
Then, required interval for population mean ([tex]\mu[/tex]) would be :
[tex]23\pm (1.645) \dfrac{6.7}{\sqrt{36}}[/tex]
[tex]=23\pm 1.837[/tex]
[tex]=(23-1.837 , 23+ 1.837)=(21.163, 24.837)[/tex]
For 95% confidence level , z= 1.96 [by z-table]
Then, required interval for population mean ([tex]\mu[/tex]) would be :
[tex]23\pm (1.96) \dfrac{6.7}{\sqrt{36}}[/tex]
[tex]=23\pm 2.189[/tex]
[tex]=(23-2.189 , 23+ 2.189)=(20.811, 25.189)[/tex]
Hence, 90% confidence interval for population mean =(21.163, 24.837)
95% confidence interval for population mean =(20.811, 25.189)