g(t)= -(t-1)^2 +5g(t)=−(t−1) 2 +5g, (, t, ), equals, minus, (, t, minus, 1, ), squared, plus, 5 What is the average rate of change of ggg over the interval -4\leq t\leq 5−4≤t≤5minus, 4, is less than or equal to, t, is less than or equal to, 5?

Respuesta :

Answer:

Average rate of change is 1.

Step-by-step explanation:

The average rate of change of function [tex]f[/tex] over the intervals [tex]a\leqslant x\leqslant b[/tex] is given by the formula,

[tex]A\left(x\right)=\dfrac{f\left(b\right)-f\left(a\right)}{b-a}[/tex].

Rewriting the formula according to given data,

[tex]A\left(t\right)=\dfrac{g\left(b\right)-g\left(a\right)}{b-a}[/tex].

Given the interval as [tex]-4\leqslant t\leqslant 5[/tex]. Hence value of a and b is a = -4 and b = 5.

Now calculate [tex]g\left(b\right)[/tex] and [tex]g\left(a\right)[/tex] as follows.

Calculation for [tex]g\left(a\right)[/tex],

[tex]g\left(t\right)=-\left(t-1\right)^2+5[/tex]

Replace t as a,

[tex]g\left(a\right)=-\left(a-1\right)^2+5[/tex]

Substituting the value,

[tex]g\left(-4\right)=-\left(-4-1\right)^2+5[/tex]

[tex]g\left(-4\right)=-\left(-5\right)^2+5[/tex]

[tex]g\left(-4\right)=-25+5[/tex]

[tex]g\left(-4\right)=-20[/tex]

Calculation for [tex]g\left(b\right)[/tex],

[tex]g\left(b\right)=-\left(b-1\right)^2+5[/tex]

Substituting the value,

[tex]g\left(5\right)=-\left(5-1\right)^2+5[/tex]

[tex]g\left(5\right)=-\left(4\right)^2+5[/tex]

[tex]g\left(5\right)=-16+5[/tex]

[tex]g\left(5\right)=-11[/tex]

Now substituting the value,

[tex]A\left(t\right)=\dfrac{-11-\left(-20\right)}{5-\left(-4\right)}[/tex].

Simplifying,

[tex]A\left(t\right)=\dfrac{-11+20}{5+4}[/tex].

[tex]A\left(t\right)=\dfrac{9}{9}[/tex].

[tex]A\left(t\right)=1[/tex].

Hence average rate of change of the given function [tex]g\left(t\right)=-\left(t-1\right)^2+5[/tex] over the given interval [tex]-4\leqslant t\leqslant 5[/tex] is 1.