Steam enters a turbine from a 2 inch diameter pipe, at 600 psia, 930 F, with a velocity of 620 ft/s. It leaves the turbine at 12 psia with a quality of 1.0, through an outlet duct 1 ft in diameter. Calculate the turbine power output

Respuesta :

Answer:

[tex]\dot W_{out} = 3374.289\,\frac{BTU}{s}[/tex]

Explanation:

The model for the turbine is given by the First Law of Thermodynamics:

[tex]- \dot W_{out} + \dot m \cdot (h_{in} - h_{out}) = 0[/tex]

The turbine power output is:

[tex]\dot W_{out} = \dot m\cdot (h_{in}-h_{out})[/tex]

The volumetric flow is:

[tex]\dot V = \frac{\pi}{4} \cdot \left( \frac{2}{12}\,ft \right)^{2}\cdot (620\,\frac{ft}{s} )[/tex]

[tex]\dot V \approx 13.526\,\frac{ft^{3}}{s}[/tex]

The specific volume of steam at inlet is:

State 1 (Superheated Steam)

[tex]\nu = 1.33490\,\frac{ft^{3}}{lbm}[/tex]

The mass flow is:

[tex]\dot m = \frac{\dot V}{\nu}[/tex]

[tex]\dot m = \frac{13.526\,\frac{ft^{3}}{s} }{1.33490\,\frac{ft^{3}}{lbm} }[/tex]

[tex]\dot m = 10.133\,\frac{lbm}{s}[/tex]

Specific enthalpies at inlet and outlet are, respectively:

State 1 (Superheated Steam)

[tex]h = 1479.74\,\frac{BTU}{lbm}[/tex]

State 2 (Saturated Vapor)

[tex]h = 1146.1\,\frac{BTU}{lbm}[/tex]

The turbine power output is:

[tex]\dot W_{out} = (10.133\,\frac{lbm}{s} )\cdot (1479.1\,\frac{BTU}{lbm}-1146.1\,\frac{BTU}{lbm})[/tex]

[tex]\dot W_{out} = 3374.289\,\frac{BTU}{s}[/tex]