A contestants spin a wheel when it is their turn in a game show. One contestant gives the wheel an initial angular speed of 3.40 rad/s. It then rotates through one-and-one-quarter revolutions and comes to rest on the BANKRUPT space. How much time does it take for the wheel to come to rest?

Respuesta :

Answer:

4.62 s

Explanation:

We are given that

Initial angular speed,[tex]\omega=3.4 rad/s[/tex]

[tex]\theta=1\frac{1}{4} rev=\frac{5}{4}\times 2\pi=2.5\pi rad[/tex]

[tex]\omega'=0[/tex]

[tex]\omega'^2-\omega^2=2\alpha \theta[/tex]

Substitute the values

[tex]0-(3.4)^2=2\times 2.5\pi \alpha[/tex]

[tex]\alpha=\frac{-(3.4)^2}{2\times 2.5\pi}=-0.736 rad/s^2[/tex]

[tex]\omega'=\omega+\alpha t[/tex]

[tex]0=3.4-0.736 t[/tex]

[tex]-0.736t=-3.4[/tex]

[tex]t=\frac{-3.4}{-0.736}=4.62 s[/tex]

Hence, the wheel takes 4.62 s to come to rest.