Respuesta :

Given:

[tex]$x^{2} y^{8} \cdot \frac{x^{3} y^{?}}{x y^{3}}=x^{4} y^{2}[/tex]

To find:

The missing value.

Solution:

Let the missing value be m.

[tex]$x^{2} y^{8} \cdot \frac{x^{3} y^{m}}{x y^{3}}=x^{4} y^{2}[/tex]

Using exponent rule: [tex]a^m \cdot a^n=a^{m+n}[/tex]

[tex]$ \frac{x^{2+3} y^{8+m}}{x y^{3}}=x^{4} y^{2}[/tex]

[tex]$ \frac{x^{5} y^{8+m}}{x y^{3}}=x^{4} y^{2}[/tex]

Using exponent rule: [tex]\frac{a^m}{a^n} =a^{m-n}[/tex]

[tex]$ x^{5-1} y^{8+m-3}=x^{4} y^{2}[/tex]

[tex]$ x^{4} y^{5+m}=x^{4} y^{2}[/tex]

Equate x terms and y terms.

[tex]x^4=x^4[/tex] and [tex]y^{5+m}=y^2[/tex]

If the bases are same, then the powers are equal.

[tex]5+m=2[/tex]

Subtract 5 from both sides.

[tex]5+m-5=2-5[/tex]

[tex]m=-3[/tex]

The missing value is -3.