The fill weight of a certain brand of adult cereal is normally distributed with a mean of 920 grams and a standard deviation of 10 grams. if we select one box of cereal at random from this population, what is the probability that it will weigh more than 904 grams? 0.8849 0.9452 0.9151 0.7698 0.2302

Respuesta :

Answer:

The probability that it will weigh more than 904 grams = 0.9452

Step-by-step explanation:

Given -

Mean [tex](\nu )[/tex] = 920 grams

Standard deviation [tex](\sigma )[/tex] =10

Let X be the weight of a certain brand of adult cereal

if we select one box of cereal at random from this population

The probability that it will weigh more than 904 grams =

[tex]P(X> 304)[/tex] = [tex]P(\frac{X - \nu }{\sigma }> \frac{904 - 920}{10})[/tex]

                   = [tex]P(Z> -1.6)[/tex]    Putting [tex]( Z = \frac{X - \nu }{\sigma } )[/tex]

                   = [tex]1- P(Z< -1.6)[/tex]  Using Z table

                   = 1 - .0548

                   = 0.9452