Respuesta :

Given:

Exponential functions

[tex]2^x[/tex], [tex]3\cdot 2^x[/tex] and [tex]2^{3x}[/tex]

To find:

The value of a, b, c, d, e and f.

Solution:

Substitute x = 0 in [tex]2^x[/tex].

[tex]a=2^0[/tex]

a = 1    (∵ [tex]a^0=1[/tex])

Substitute x = 0 in [tex]3\cdot 2^x[/tex].

[tex]b=3\cdot 2^0[/tex]

[tex]b = 3\cdot 1[/tex]  (∵ [tex]a^0=1[/tex])

b = 3

Substitute x = 0 in [tex]2^{3x}[/tex].

[tex]c=2^{3\cdot 0}[/tex]

[tex]c= 2^{0}[/tex]  (∵ [tex]a^0=1[/tex])

c = 1

Substitute x = 1 in [tex]2^x[/tex].

[tex]d=2^1[/tex]

d = 2

Substitute x = 1 in [tex]3\cdot 2^x[/tex].

[tex]e=3\cdot 2^1[/tex]

[tex]e = 3\cdot 2[/tex]

e = 6

Substitute x = 1 in [tex]2^{3x}[/tex].

[tex]f=2^{3\cdot 1}[/tex]

[tex]f= 2^{3}[/tex]

f = 8

Hence a = 1, b = 3, c = 1, d = 2, e = 6 and f = 8.