Respuesta :

 [tex]u = 6[/tex] &  [tex]v=5[/tex] .

Step-by-step explanation:

Here we need to find the solution to the system:[tex]0.5u-0.6v=0 ,0.4u+1.7v=10.9[/tex]

Let's solve both equations :

⇒ [tex]0.5u-0.6v=0[/tex]

⇒ [tex]0.5u=0.6v[/tex]

⇒ [tex]u = \frac{6}{5}v[/tex]

Putting this value in equation : [tex]0.4u+1.7v=10.9[/tex]

⇒ [tex]4u+17v=109[/tex]   { Multiplying both sides by 10 }

⇒ [tex]4(\frac{6}{5}v )+17v=109[/tex]

⇒ [tex]v(\frac{24}{5} +17)=109[/tex]

⇒ [tex]v(21.8)=109[/tex]

⇒ [tex]v=5[/tex]

Putting this value in equation :  [tex]u = \frac{6}{5}v[/tex]

⇒ [tex]u = \frac{6}{5}(5)[/tex]

⇒ [tex]u = 6[/tex]

Therefore ,  [tex]u = 6[/tex] &  [tex]v=5[/tex] .