Respuesta :

Given:

Given that one line segment is 12 less than twice the length of another line segment.

The sum of the links is 69 cm.

Let x and y denote the lengths of two line segments.

Thus, we have;

[tex]x+y=69[/tex] and

[tex]x=2y-12[/tex]

We need to determine the lengths of the line segments.

Lengths of the line segments:

Let us use the substitution method to determine the length of the line segment.

Hence, substituting [tex]x=2y-12[/tex] in the equation [tex]x+y=69[/tex], we get;

[tex]2y-12+y=69[/tex]

      [tex]3y-12=69[/tex]

              [tex]3y=81[/tex]

                [tex]y=27[/tex]

Thus, the length of y is 27.

Substituting [tex]y=27[/tex] in the equation [tex]x=2y-12[/tex] , we have;

[tex]x=2(27)-12[/tex]

[tex]x=54-12[/tex]

[tex]x=42[/tex]

Thus, the length of x is 42.

Therefore, the lengths of the line segments are 27 cm and 42 cm.