A boat is traveling at speed v0 on a lake when it turns off its engine. The boat is subject to a drag force that is proportional to the cube of the boat’s speed. In other words Fd = −bv3 Find the time it takes for the boat’s speed to decrease to half its initial value.

Respuesta :

Answer:

[tex]t = 1.5\cdot \frac{m}{b\cdot v_{o}^{2}}[/tex]

Explanation:

The equation of equilibrium for the boat is:

[tex]\Sigma F = - F_{D} = m\cdot a[/tex]

[tex]-b\cdot v^{3} = m \cdot a[/tex]

[tex]m\cdot \frac{dv}{dt} = - b \cdot v^{3}[/tex]

This is a first-order linear differential equation with separable variables:

[tex]-\frac{m}{b}\cdot \frac{dv}{v^{3}} = dt[/tex]

[tex]-\frac{m}{b} \int\limits^{v_{f}}_{v_{o}} {v^{-3}} \, dv = t[/tex]

[tex]-\frac{m}{b}\cdot \left(-0.5\cdot v^{-2} \right)|_{v_{o}}^{v_{f}} = t[/tex]

[tex]0.5\cdot \frac{m}{b}\cdot \left(v_{f}^{-2} - v_{o}^{-2} \right) = t[/tex]

The time taken to decrease the speed of the boat to half of its initial value is:

[tex]t = 0.5\cdot \frac{m}{b}\cdot \left[\left(\frac{1}{2} \right)^{-2} - 1 \right]\cdot v_{o}^{-2}[/tex]

[tex]t = 1.5\cdot \frac{m}{b\cdot v_{o}^{2}}[/tex]