Respuesta :

Answer:

See Explanation

Step-by-step explanation:

[tex]

\because \sin\bigg(\frac{\pi}{2} + x\bigg)= \cos x\\

\&\: \sin (\pi - x) = \sin x\\\\

Now,

\frac{\sin\bigg(\frac{\pi}{2} + x\bigg)}{\sin (\pi - x)} = \cot x\\\\

LHS

= \frac{\sin\bigg(\frac{\pi}{2} + x\bigg)}{\sin (\pi - x)} \\\\

=\frac{\cos x}{sinx} \\\\

= \cot x\\\\

= RHS\\\\

Hence\: Proved

[/tex]