Respuesta :
Answer:
Formula of the function is found:
[tex]H(t) = 8.5cos(\frac{2\pi}{3}(t-1.3))-35.5[/tex]
For t= 2.5s , vertical distance is:
H(2.5) = +42.38cm , H(2.5) = -42.38cm
Explanation:
General form of trigonometric function H(t) is given by:
[tex]H(t)=Acos(B(t-C))+D[/tex]
Where
A = Amplitude
Period = 3s = 2π/B
B = 2π/3
C = Phase shift = 1.3s
D = Vertical Shift
Find A (Amplitude):
Amplitude = (highest value - lowest value)/2
Amplitude = (-27-(-44))/2
Amplitude = (-27+44)/2
Amplitude = 8.5
Find D (Vertical Shift)
Vertical shift can be found by finding midpoint
Midpoint = (highest value + lowest value)/2
Midpoint = (-27-44)/2
Midpoint = -35.5
Substitute the values of A,B,C,D in the general form of trigonometric function.
[tex]H(t)=Acos(B(t-C)) +D[/tex]
[tex]H(t) = 8.5cos(\frac{2\pi}{3}(t-1.3))-35.5[/tex]
which is the formula of the function
For t = 2.5s
[tex]H(2.5)=8.5cos(\frac{2\pi}{3}(2.5-1.3))-35.5 \\H(2.5)= +42.38 {cm} ,H(2.5)=-42.38cm[/tex]