☆☆PLEASE HELP ASAP!!☆☆
Add one term to the polynomial expression 14x^19 – 9x^15 + 11x^4 + 5x^2 + 3 to make it into a 22nd degree polynomial.​

Respuesta :

Answer:

The new expression is [tex]p' = 5\cdot x^{2}+11\cdot x^{4}-9\cdot x^{15}+14\cdot x^{19}+12\cdot x^{22}[/tex].

Step-by-step explanation:

A polynomial is a sum of algebraic monomials such that:

[tex]p = \Sigma_{i=0}^{n} c_{i}\cdot x^{i}[/tex]

Where [tex]n[/tex] is the degree of the polynomial and [tex]c_{i}[/tex] is the i-th coefficient of the polynomial. A 22nd degree polynomial has [tex]n = 22[/tex], so that given polynomial must added by a monomial with grade 22. Thus:

If [tex]p = 5\cdot x^{2} + 11\cdot x^{4}-9\cdot x^{15}+14\cdot x^{19}[/tex] and [tex]q = 12\cdot x^{22}[/tex], then we have:

[tex]p' = p+q[/tex]

[tex]p' = 5\cdot x^{2}+11\cdot x^{4}-9\cdot x^{15}+14\cdot x^{19}+12\cdot x^{22}[/tex]

The new expression is [tex]p' = 5\cdot x^{2}+11\cdot x^{4}-9\cdot x^{15}+14\cdot x^{19}+12\cdot x^{22}[/tex].