find the perimeter & area of the rectangle

Answer:
Perimeter = [tex]34\sqrt{2}[/tex] feet
Area = 60 feet²
Step-by-step explanation:
Let us revise the rules of perimeter and area of a rectangle
→ From the given figure
∵ The length = [tex]\sqrt{8}[/tex] feet
∵ The width = 5[tex]\sqrt{18}[/tex] feet
→ Simplify the roots
∵ [tex]\sqrt{8}=\sqrt{(2)(2)(2)}[/tex]
∴ [tex]\sqrt{8}=2\sqrt{2}[/tex]
∴ The length = [tex]2\sqrt{2}[/tex] feet
∵ [tex]5\sqrt{18}=5\sqrt{(3)(3)(2)}[/tex]
∴ [tex]5\sqrt{18}=5(3)\sqrt{2}=15\sqrt{2}[/tex]
∴ The width = [tex]15\sqrt{2}[/tex] feet
→ Perimeter = 2(Length + width)
∵ Perimeter = [tex]2[2\sqrt{2}+15\sqrt{2}][/tex]
∴ Perimeter = [tex]2[17\sqrt{2}][/tex]
∴ Perimeter = [tex]34\sqrt{2}[/tex] feet
→ Area = Length × Width
∵ Area = [tex]2\sqrt{2}[/tex] × [tex]15\sqrt{2}[/tex]
∴ Area = [tex](2)(15)(\sqrt{2})(\sqrt{2})=(30)(2)=60[/tex]
∴ Area = 60 feet²