Respuesta :

Answer:

Perimeter = [tex]34\sqrt{2}[/tex] feet

Area = 60 feet²

Step-by-step explanation:

Let us revise the rules of perimeter and area of a rectangle

  • Perimeter = 2(Length + width)
  • Area = Length × Width

→ From the given figure

∵ The length = [tex]\sqrt{8}[/tex] feet

∵ The width = 5[tex]\sqrt{18}[/tex] feet

→ Simplify the roots

∵ [tex]\sqrt{8}=\sqrt{(2)(2)(2)}[/tex]

∴ [tex]\sqrt{8}=2\sqrt{2}[/tex]

∴ The length = [tex]2\sqrt{2}[/tex] feet

∵ [tex]5\sqrt{18}=5\sqrt{(3)(3)(2)}[/tex]

∴ [tex]5\sqrt{18}=5(3)\sqrt{2}=15\sqrt{2}[/tex]

∴ The width = [tex]15\sqrt{2}[/tex] feet

→ Perimeter = 2(Length + width)

∵ Perimeter = [tex]2[2\sqrt{2}+15\sqrt{2}][/tex]

∴ Perimeter = [tex]2[17\sqrt{2}][/tex]

∴ Perimeter = [tex]34\sqrt{2}[/tex] feet

→ Area = Length × Width

∵ Area = [tex]2\sqrt{2}[/tex] × [tex]15\sqrt{2}[/tex]

∴ Area = [tex](2)(15)(\sqrt{2})(\sqrt{2})=(30)(2)=60[/tex]

∴ Area = 60 feet²