Find the distance between the two points in simplest radical form.
(0, –4) and (-3,-1)

Answer:
3[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Calculate the distance d using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = (0, - 4) and (x₂, y₂ ) = (- 3, - 1)
d = [tex]\sqrt{(-3-0)^2+(-1+4)^2}[/tex]
= [tex]\sqrt{(-3)^2+3^2}[/tex]
= [tex]\sqrt{9+9}[/tex]
= [tex]\sqrt{18}[/tex]
= [tex]\sqrt{9(2)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{2}[/tex] = 3[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Hey there!
Given;
The points are;(0,-4) and (-3,-1).
Use formula for distance between the two points.
[tex]d = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
Put all values.
[tex]d = \sqrt{( { - 3 - 0)}^{2} + ( { - 1 + 4)}^{2} } [/tex]
Simplify to get answer.
[tex]d = \sqrt{9 + 9} [/tex]
[tex]d = \sqrt{18} [/tex]
[tex]d = 3 \sqrt{2} [/tex]
Therefore, the distance is 3√(2) units or 4.24 units.
Hope it helps...