Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

AOBC is a parallelogram ,

Thus :

[tex]OA = BC = a[/tex]

And ;

[tex]AC = OB = b [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

M is the midpoint of AC ,

So :

[tex]AM = MC = \frac{b}{2} \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

According to case of Cosine in ∆ OAM :

[tex] {OM}^{2} = {OA}^{2} + {AM}^{2} - 2( OA) \times ( AM) \times \cos(A) \\ [/tex]

So :

[tex] {OM}^{2} = {a}^{2} + \frac{ {b}^{2} }{4} - 2(a)( \frac{b}{2} ) \cos(A) \\ [/tex]

[tex] {OM}^{2} = \frac{4 {a}^{2} + b}{4} - ab \cos(A) \\ [/tex]

_________________________________

I have something more to tell.

Just for know more...

According to the case of Sine in ∆ OAM :

[tex] \frac{OM}{ sin(A) } = \frac{

AM}{ \sin(O) } = \frac{OA}{ \sin(M) } \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️