Answer: The volume in the balloon at the higher altitude is 260 L
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 760 torr
[tex]P_2[/tex] = final pressure of gas = 511 torr
[tex]V_1[/tex] = initial volume of gas = 233 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]22.0^0C=(22.0+273)K=295K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]-52.0^0C=(-52.0+273)K=221K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{760\times 233}{295}=\frac{511\times V_2}{221}[/tex]
[tex]V_2=260L[/tex]
The volume in the balloon at the higher altitude is 260 L