Respuesta :

Answer:

The solution is x = -2 and y = 2.

Step-by-step explanation:

Given that:

14y - 8x = 44      Eqn 1

-7y = -x - 16       Eqn 2

In elimination method, you try to eliminate one variable in the equation by adding or subtracting.

Multiplying Eqn 2 by 2

2(-7y = -x - 16)

-14y=-2x-32

-14y+2x= -32    Eqn 3

Adding Eqn 1 and 3

(14y-8x)+(-14y+2x)=44+(-32)

14y-8x-14y+2x=44-32

-6x=12

Dividing both sides by -6

[tex]\frac{-6x}{-6}=\frac{12}{-6}\\x=-2[/tex]

Putting x=-2 in Eqn 2

-7y=-(-2)-16

-7y=2-16

-7y=-14

Dividing both sides by -7

[tex]\frac{-7y}{-7}=\frac{-14}{-7}\\y=2[/tex]

Hence,

The solution is x = -2 and y = 2.