The factor tree for 1,764 is shown.

A factor tree starts with 1,764 on the top. 1,764 branches down to 2 on the left and 882 on the right. 882 branches down to 2 on the left and 441 on the right. 441 branches down to 9 on the left and 49 on the right. 9 branches down to 3 on the left and 3 on the right. 49 branches down to 7 on the left and 7 on the right.

What is the simplest form of StartRoot 1,764 EndRoot?

21
42
32(72)
22(32)(72)

Respuesta :

Answer:

42

Step-by-step explanation:

               |--------------1764------------|

               |                                      |

              2                           |-------882-----------|

                                           |                            |

                                          2               |--------441------|

                                                           |                      |

                                                   |------9-----|        |----49---|

                                                   |               |        |             |

                                                  3              3      7            7

From the factor tree we see that

[tex] 1764 = 2^2 \times 3^3 \times 7^2 [/tex]

Now we need to find the square root of 1764.

[tex]\sqrt{1764} = \sqrt{2^2 \times 3^2 \times 7^2} = \sqrt{(2 \times 3 \times 7)^2} = \sqrt{(42)^2} = 42[/tex]

z0mba

Answer: 42

Step-by-step explanation: It is right trust me.