Respuesta :

Given:

A figure.

To find:

The value of x and y.

Solution:

In triangle ADC, all angles are equal, so it is an equilateral triangle.

We know that, all sides of an equilateral triangle are equal.

[tex]AD=AC[/tex]       ...(i)

[tex]3x-5=5y-4[/tex]                   ...(ii)

In triangle ABD,

[tex]\angle BAD=\angle ABD[/tex]

Base angles are equal, so triangle ABD is an isosceles triangle.

[tex]AD=BD[/tex]     ...(iii)

Using (i) and (iii), we get

[tex]AC=BD[/tex]

[tex]5y-4=y+12[/tex]

[tex]5y-y=4+12[/tex]

[tex]4y=16[/tex]

Divide both sides by 4.

[tex]y=4[/tex]

Putting y=4 in (ii), we get

[tex]3x-5=5(4)-4[/tex]

[tex]3x-5=20-4[/tex]

[tex]3x-5=16[/tex]

Adding 5 on both sides, we get

[tex]3x=16+5[/tex]

[tex]3x=21[/tex]

Divide both sides by 3.

[tex]x=7/tex]

Therefore, the value of x is 7 and the value of y is 4.

Ver imagen erinna