Respuesta :

Answer:

JL = 8 m

KD = 8 m

Step-by-step explanation:

By 45° - 45° - 90° triangle theorem:

[tex]JK = \frac{1}{ \sqrt{2} } JD \\ \\JK = \frac{1}{ \sqrt{2} } \times 8 \sqrt{2} \\ \\ \red{JK = \boxed{8 }}\: m \\ \\ KD= \frac{1}{ \sqrt{2} } JD \\ \\KD = \frac{1}{ \sqrt{2} } \times 8 \sqrt{2} \\ \\ \purple{ KD = \boxed{8 } }\:m\\ \\[/tex]