Solve the equation. \dfrac32 + b = \dfrac74 2 3 ​ +b= 4 7 ​ start fraction, 3, divided by, 2, end fraction, plus, b, equals, start fraction, 7, divided by, 4, end fraction b=b=b, equals

Respuesta :

Given:

The equation is

[tex]\dfrac{3}{2}+b=\dfrac{7}{4}[/tex]

To find:

The value of b.

Solution:

We have,

[tex]\dfrac{3}{2}+b=\dfrac{7}{4}[/tex]

Subtracting both sides by [tex]\dfrac{3}{2}[/tex], we get

[tex]b=\dfrac{7}{4}-\dfrac{3}{2}[/tex]

[tex]b=\dfrac{7-2(3)}{4}[/tex]

[tex]b=\dfrac{7-6}{4}[/tex]

[tex]b=\dfrac{1}{4}[/tex]

Therefore, the value of b is [tex]\dfrac{1}{4}[/tex].

Answer:

1/4

Step-by-step explanation: