Respuesta :

[tex]\huge\bold{Given:}[/tex]

Length of the perpendicular = 8

Length of the hypotenuse = 16

[tex]\huge\bold{To\:find:}[/tex]

The length of the missing side ''[tex]x[/tex]".

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\longrightarrow{\purple{x\:=\:√192}}[/tex] 

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

Using Pythagoras theorem, we have

(Perpendicular)² + (Base)² = (Hypotenuse)²

[tex]\longrightarrow{\blue{}}[/tex]  (8)² + [tex]{x}^{2}[/tex] = (16)²

[tex]\longrightarrow{\blue{}}[/tex]  64 + [tex]{x}^{2}[/tex] = 256

[tex]\longrightarrow{\blue{}}[/tex]  [tex]{x}^{2}[/tex] = 256 - 64

[tex]\longrightarrow{\blue{}}[/tex]  [tex]{x}^{2}[/tex] = 192

[tex]\longrightarrow{\blue{}}[/tex]  [tex]x[/tex] = [tex]\sqrt{192}[/tex]

Therefore, the length of the missing side [tex]x[/tex] is [tex]\sqrt{192}[/tex].

[tex]\huge\bold{To\:verify :}[/tex]

[tex]\longrightarrow{\green{}}[/tex] (8)² + (√192)² = (16)²

[tex]\longrightarrow{\green{}}[/tex] 64 + 192 = 256

[tex]\longrightarrow{\green{}}[/tex] 256 = 256

[tex]\longrightarrow{\green{}}[/tex] L.H.S. = R. H. S.

Hence verified. ✔

[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]