Respuesta :
The amount of gravitational force the two bodies exert on one another is [tex]2.0 \times 10^{27} \;Newton[/tex].
Given the following data:
- Mass of Moon = [tex]7.3 \times 10^{23}\; kg[/tex]
- Mass of Earth = [tex]6.0 \times 10^{24}\; kg[/tex]
- Radius = [tex]3.84 \times 10^5\; kilometers[/tex]
Scientific data:
- Gravitational constant = [tex]6.67\times 10^{-11}[/tex]
To determine the amount of gravitational force the two bodies exert on one another, we would apply Newton's Law of Universal Gravitation:
Mathematically, Newton's Law of Universal Gravitation is given by the formula:
[tex]F = G\frac{M_1M_2}{r^2}[/tex]
Where:
- F is the gravitational force.
- G is the gravitational constant.
- M is the mass of object.
- r is the distance between centers of the masses.
Substituting the given parameters into the formula, we have;
[tex]F = 6.67\times 10^{-11} \times \frac{7.3 \times 10^{23} \; \times \;6.0 \times 10^{24}}{(3.84 \times 10^5)^2}\\\\F = 6.67\times 10^{-11} \times \frac{4.38 \times 10^{48} }{1.48 \times 10^{11} }\\\\F=\frac{2.92 \times 10^{38} }{1.48 \times 10^{11}} \\\\F= 2.0 \times 10^{27} \;Newton[/tex]
Read more: https://brainly.com/question/11359658