[tex]\begin{equation}\text { Question: The value of } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=0}^{2 n-1} \frac{n^{2}}{n^{2}+4 r^{2}} \text { is }\end{equation}[/tex]

Respuesta :

You have something resembling a Riemann sum. Multiply through the summand by 1/n², then you can write

[tex]\displaystyle \lim_{n\to\infty} \frac1n \sum_{r=0}^{2n-1} \frac{1}{1+4\left(\frac rn\right)^2} = \int_0^2 \frac{dx}{1+4x^2} = \boxed{\frac12 \tan^{-1}(4)}[/tex]