In the figure below, the segments IJ and IK are tangent to the circle centered at O. Given that OJ=8.4 and OI=15.9, find IK.

Answer:
IK = 13.5
Step-by-step explanation:
A^2 + B^2 = C^2
(8.4)^2 + B^2 = (15.9)^2
70.56 + B^2 = 252.81
B^2 = 182.25
B =13.49925... ≈ 13.5 = IK