Plsss help me solve this...

Answer:
To Prove,
(1+tanA-secA)×(1+tanA+secA)=2tanA
LHS,
(1+tanA-secA)×(1+tanA+secA)
Let's Expand the brackets,
=1+tanA-secA+tanA+tan²A+tanA×(-secA)+secA+(tanA×secA)-sec²A
=1+tanA+tanA-secA+secA-tanAsecA+tanAsecA+tan²A-sec²A
=1+2tanA+tan²A-sec²A [secA-secA=0 and tanAsecA-tanAsecA=0]
=1+2tanA-1 [sec²A-tan²A=1; so, -sec²A+tan²A=-1]
=2tanA
=RHS
∴LHS=RHS
∴Proven
Answer:
see explanation
Step-by-step explanation:
using the trigonometric identity
• 1 + tan²x = sec²x
Consider the left side
(1 + tanA - secA)(1 + tanA + secA) ← expand using FOIL
= (1 + tanA)² + secA(1 + tanA) - secA(1 + tanA) - sec²A ← collect like terms
= 1 + 2tanA + tan²A - sec²A
= 1 + tan²A - sec²A + 2tanA
= sec²A - sec²A + 2tanA
= 2tanA
= right side ⇒ proven