When 0.500 g of vitamin k is dissolved in 10.0 g of camphor (kf = 40.0°c/m), the freezing point of the solution is 4.43°c lower than that of pure camphor. assuming vitamin k is a nonelectrolyte in camphor, calculate its molar mass. 55.4 g/mol 451 g/mol 0.451 g/mol 3.54 × 104 g/mol?

Respuesta :

The solution for this problem is:
1. number of mole / kg of vitamin K = (4.43 °C) / (40.0 °C/m) = 0.11075 m *molality freezing point depression constant for camphor is 37.7 C Kg/mo
2. (0.11075 mol/kg) x (0.0100 kg) = 0.0011075 mol 
3. (0.500 g) / (0.0011075 mol) = 451 g/mol

The molar mass of vitamin K is [tex]\boxed{451.46{\text{ g/mol}}}[/tex].

Further Explanation:

Colligative properties depend only on concentration of solute particles, not on their identities. Four colligative properties are mentioned below.

  • Relative lowering of vapor pressure
  • Elevation in boiling point
  • Depression in freezing point
  • Osmotic pressure

The expression for freezing point depression is,

[tex]\Delta {{\text{T}}_{\text{f}}} = {{\text{k}}_{\text{f}}}{\text{m}}[/tex]                                                                                  …… (1)

Here,

[tex]\Delta {{\text{T}}_{\text{f}}}[/tex] is depression in freezing point.

[tex]{{\text{k}}_{\text{f}}}[/tex] is molal freezing point constant.

m is molality of solution.

Rearrange equation (1) to calculate m.

 [tex]{\text{m}} = \dfrac{{\Delta {{\text{T}}_{\text{f}}}}}{{{{\text{k}}_{\text{f}}}}}[/tex]                                                        …… (2)

Substitute [tex]4.43{\text{ }}^\circ {\text{C}}[/tex] for [tex]\Delta {{\text{T}}_{\text{f}}}[/tex] and [tex]40.0{\text{ }}^\circ {\text{C/m}}[/tex] for [tex]{{\text{k}}_{\text{f}}}[/tex] in equation (2).

[tex]\begin{aligned}{\text{m}} &= \frac{{4.43{\text{ }}^\circ {\text{C}}}}{{40.0{\text{ }}^\circ {\text{C/m}}}} \\ &= 0.11075{\text{ m}} \\\end{aligned}[/tex]  

The formula to calculate molality of solution is as follows:

[tex]{\text{Molality of solution}} = \dfrac{{{\text{Moles }}\left( {{\text{mol}}} \right){\text{of solute}}}}{{{\text{Mass }}\left( {{\text{kg}}} \right){\text{ of solvent}}}}[/tex]                                     …… (3)

Rearrange equation (3) for moles of solute.

[tex]{\text{Moles of solute}} = \left( {{\text{Molality of solution}}} \right)\left( {{\text{Mass of solvent}}} \right)[/tex]                        …… (4)

Substitute 0.11075 m for molality of solution and 10 g for mass of solvent in equation (4) to calculate moles of vitamin K.

[tex]\begin{aligned}{\text{Moles of Vitamin K}} &= \left( {{\text{0}}{\text{.11075 m}}} \right)\left( {{\text{10}}{\text{.0 g}}} \right)\left( {\frac{{{{10}^{ - 3}}{\text{ kg}}}}{{1{\text{ g}}}}} \right) \\&= 0.0011075{\text{ mol}} \\\end{aligned}[/tex]  

The molar mass of vitamin K can be calculated from its moles as follows:

 [tex]\begin{aligned} {\text{Molar mass of Vitamin K}} &= \frac{{0.500{\text{ g}}}}{{0.0011075{\text{ mol}}}} \\&= 451.46{\text{ g/mol}} \\\end{aligned}[/tex]

Learn more:

  1. Choose the solvent that would produce the greatest boiling point elevation: https://brainly.com/question/8600416
  2. What is the molarity of the stock solution? https://brainly.com/question/2814870

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration

Keywords: colligative properties, freezing point, vitamin K, 451.46 g/mol, 0.500 g, 0.11075 m, 0.0011075 mol, depression in freezing point, molality, relative lowering of vapor pressure, osmotic pressure, elevation in boiling point.